NORTH ATLANTIC TREATY ORGANIZATION

SCIENCE AND TECHNOLOGY ORGANIZATION

AC/323()

www.sto.nato.int

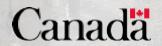
STO TECHNICAL REPORT

PUB REF STO-MP-SAS-114-PPD

ANNEX D

SAS-114 Experiment Update: Effect of Source Reliability, Information Credibility, and Classification Level on Analysts' Uncertainty about Information Accuracy

David R. Mandel, Mandeep K. Dhami, Greg Weaver, and Mark Timms



SAS-114 Experiment Update: Effect of Source Reliability, Information Credibility, and Classification Level on Analysts' Uncertainty about Information Accuracy

David R. Mandel (DRDC), Mandeep K. Dhami (Middlesex University, Greg Weaver (US Army Research Laboratory), and Mark Timms (DRDC)
Email: david.mandel@drdc-rddc.gc.ca

Acknowledgements

 We thank Brenda Fraser, Sarah Gibbon, and William Kozey from DRDC SCS Section's Research Operations Group for assistance with this research. This research contributes to SAS-114, Project 05ad on Joint Intelligence Collection and Analytic Capability and Project CSSP-2016-TI-2224 on Improving Intelligence Assessment Processes with Decision Science.

Background

• Three commonly used markings in intelligence production are (a) source reliability, (b) information credibility, and (c) classification.

- credibility speaks directly to information quality: i.e., probability that information received is accurate; reliability should be positively related, and classification is at best a weak indicator of accuracy.
- Our overarching goal was to examine how intelligence analysts' judgments of information accuracy are influenced by these metainformational markings.

Scales from AJP 2.1 and other intelligence doctrine

	Source Reliability	Information Credibility		
Α	Completely reliable	1	Completely credible	
В	Usually reliable	2	Probably true	
С	Fairly reliable	3	Possibly true	
D	Not usually reliable	4	Doubtful	
Ε	Unreliable	5	Improbable	
F	Reliability cannot be judged	6	Truth cannot be judged	

Pertinent literature

- Baker et al. (1968) found that 87% of spot reports in an Army field exercise used A1, B2, C3, D4, E5, F6. More striking B2 comprised 72% of ratings!
- Samet (1975) studied 37 Army captains familiar with the scales and found using multiple methods that credibility had a stronger effect on assessed information accuracy than reliability.
- Travers et al. (2014) found that non-analysts exhibit a "secrecy heuristic" in which they assign more weight to classified than to unclassified information, so it is of interest to verify whether analysts are similarly biased.

Hypotheses

H1: Judged accuracy will increase with reliability and credibility

H2: Analysts will not be susceptible to the secrecy heuristic, and classification will have little or no effect on accuracy.

H3: The test-retest reliability of analysts will be proportional to the congruence of the reliability and credibility scales.

H4: Likewise, the inter-analyst reliability of accuracy judgments will be proportional to the congruence of the reliability and credibility scales.

Method

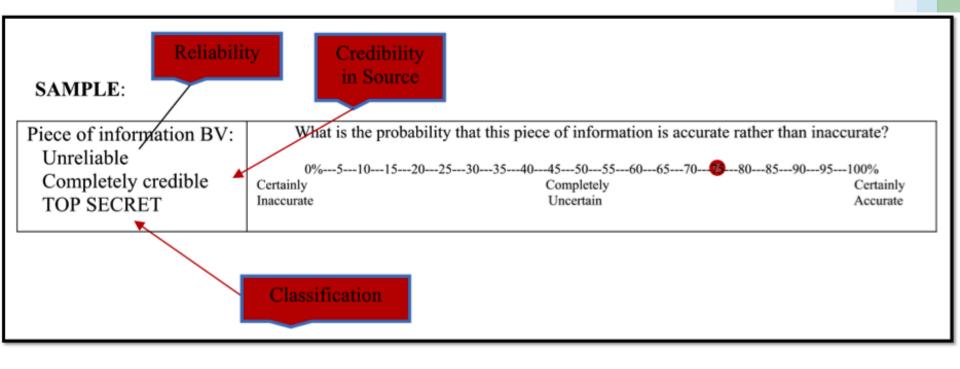
Sample

- N = 44 UK and US analysts/operators.
- 77% male
- M age = 41.8 y (SD = 12.7)
- M experience in operational community = 16.2 y (SD = 13.6)

Method

- 96% familiar with official/FOUO and TS distinction
 - 2 participants unfamiliar were omitted from analysis.

50.0% familiar with source reliability scale

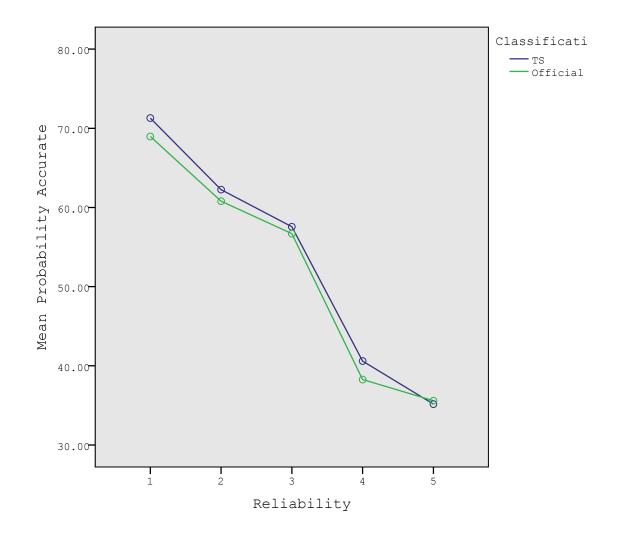

53.0% familiar with information credibility scale

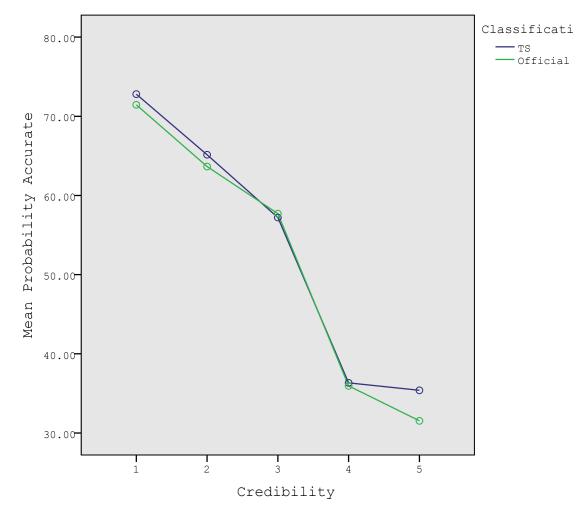
Method

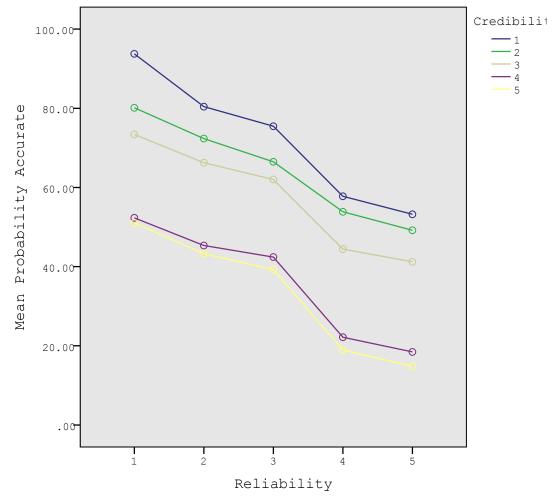
Design and Stimuli

- Independent variables
 - Source reliability (all 6 levels)
 - Information credibility (all 6 levels)
 - Security classification (2 Official/FOUO and Top Secret)
- Full factorial repeated measures design: $6 \times 6 \times 2 = 72$ cases plus 10 resampled cases, all presented in randomized order.
- Resampled cases all at official/FOUO level and varied degree of reliability-credibility scale congruence (low, med, high)

Results testing H1 and H2


H1: Judged accuracy will increase with reliability and credibility


H2: Analysts will not be susceptible to the secrecy heuristic, and classification will have little or no effect on accuracy.


multivariate rests

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
Reliability	Pillai's Trace	.873	65.062 ^b	4.000	38.000	.000	.873
	Wilks' Lambda	.127	65.062 ^b	4.000	38.000	.000	.873
	Hotelling's Trace	6.849	65.062 ^b	4.000	38.000	.000	.873
	Roy's Largest Root	6.849	65.062 ^b	4.000	38.000	.000	.873
Credibility	Pillai's Trace	.893	79.689 ^b	4.000	38.000	.000	.893
	Wilks' Lambda	.107	79.689 ^b	4.000	38.000	.000	.893
	Hotelling's Trace	8.388	79.689 ^b	4.000	38.000	.000	.893
	Roy's Largest Root	8.388	79.689 ^b	4.000	38.000	.000	.893
Classification	Pillai's Trace	.096	4.365 ^b	1.000	41.000	.043	.096
	Wilks' Lambda	.904	4.365 ^b	1.000	41.000	.043	.096
	Hotelling's Trace	.106	4.365 ^b	1.000	41.000	.043	.096
	Roy's Largest Root	.106	4.365 ^b	1.000	41.000	.043	.096
Reliability * Credibility	Pillai's Trace	.709	3.962 ^b	16.000	26.000	.001	.709
3/ 3/	Wilks' Lambda	.291	3.962 ^b	16.000	26.000	.001	.709
	Hotelling's Trace	2.438	3.962 ^b	16.000	26.000	.001	.709
	Roy's Largest Root	2.438	3.962 ^b	16.000	26.000	.001	.709
Reliability *	Pillai's Trace	.174	2.001 ^b	4.000	38.000	.114	.174
Classification	Wilks' Lambda	.826	2.001 ^b	4.000	38.000	.114	.174
	Hotelling's Trace	.211	2.001 ^b	4.000	38.000	.114	.174
	Roy's Largest Root	.211	2.001 ^b	4.000	38.000	.114	.174
Credibility *	Pillai's Trace	.230	2.842 ^b	4.000	38.000	.037	.230
Classification	Wilks' Lambda	.770	2.842 ^b	4.000	38.000	.037	.230
	Hotelling's Trace	.299	2.842 ^b	4.000	38.000	.037	.230
	Roy's Largest Root	.299	2.842 ^b	4.000	38.000	.037	.230
Reliability * Credibility *	Pillai's Trace	.507	1.668 ^b	16.000	26.000	.119	.507
Classification	Wilks' Lambda	.493	1.668 ^b	16.000	26.000	.119	.507
	Hotelling's Trace	1.027	1.668 ^b	16.000	26.000	.119	.507
	Roy's Largest Root	1.027	1.668 ^b	16.000	26.000	.119	.507

a. Design: Intercept
 Within Subjects Design: Reliability + Credibility + Classification + Reliability * Credibility * Classification + Credibility * Classification + Reliability * Classification

T-Test

[DataSet3] /Users/davidrmandel/Desktop/Dataset3_Allvariables_replaced_8Nov (1).sav

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
EffectClassification	42	1.3130	4.07267	.62843

Cohen's d = .3

One-Sample Test

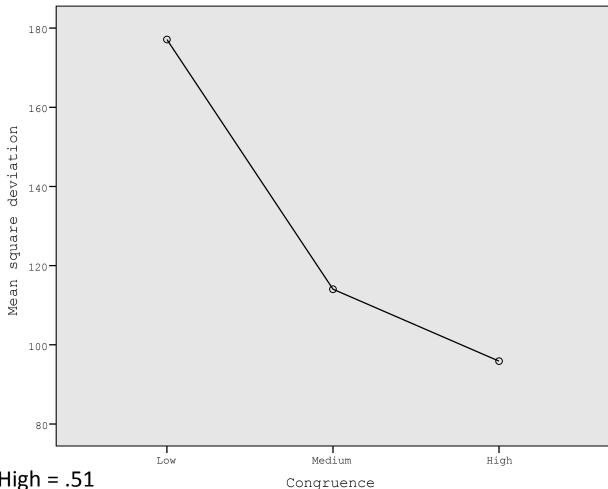
	Test Value = 0							
			Sig. (2-	Mean	95% Confidence Interval of the Difference			
	t	df	tailed)	Difference	Lower	Upper		
EffectClassification	2.089	41	.043	1.31298	.0439	2.5821		

Bootstrap for Coefficients

			Bootstrap ^a					
					Sig. (2-	BCa 95% Confi	dence Interval	
Model		В	Bias	Std. Error	tailed)	Lower	Upper	
1	(Constant)	1.208	030	.837	.155	468	2.692	
	YearsofExp	.005	.004	.051	.931	089	.117	
2	(Constant)	4.121	749	5.230	.448	-5.545	12.650	
	YearsofExp	.125	030	.163	.497	184	.351	
	Age	135	.035	.178	.498	463	.297	
	Gender	.617	090	1.314	.623	-2.219	3.061	

a. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples

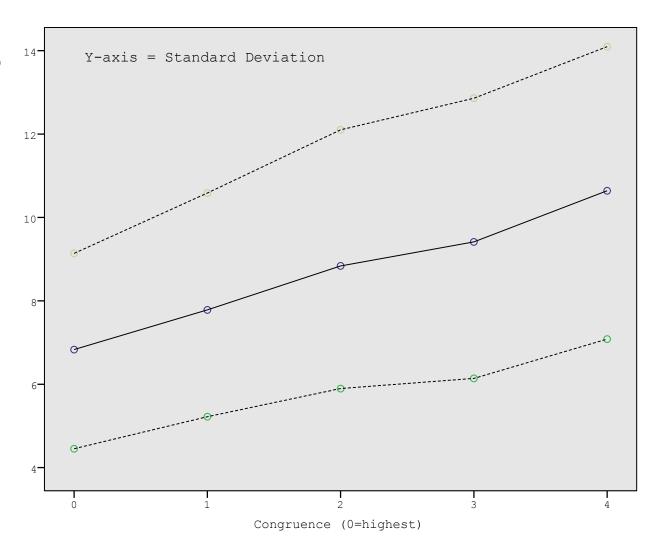
Results testing Hypothesis 3


H3: The test-retest reliability of analysts will be proportional to the congruence of the reliability and credibility scales.

Multivariate Testsa

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
Congruence	Pillai's Trace	.178	4.345 ^b	2.000	40.000	.020	.178
	Wilks' Lambda	.822	4.345 ^b	2.000	40.000	.020	.178
	Hotelling's Trace	.217	4.345 ^b	2.000	40.000	.020	.178
	Roy's Largest Root	.217	4.345 ^b	2.000	40.000	.020	.178

a. Design: Intercept Within Subjects Design: Congruence


Bootstrap for Coefficients

			Bootstrap ^a					
l					Sig. (2-	BCa 95% Confi	dence Interval	
Model		В	Bias	Std. Error	tailed)	Lower	Upper	
1	(Constant)	148.555	875 ^b	90.351 ^b	.126 ^b	-34.448 ^b	340.394 ^b	
l	FamRel	47.659	899 ^b	88.981 ^b	.592 ^b	-135.327 ^{b,c}	231.080 ^b	
l	FamCred	-25.826	3.630 ^b	93.582 ^b	.782 ^b	-187.871 ^b	177.572 ^b	
2	(Constant)	-202.806	17.689 ^b	247.766 ^b	.420 ^b	-673.514 ^b	374.254 ^b	
l	FamRel	16.262	-3.055 ^b	64.390 ^b	.780 ^b	-103.745 ^{b,c}	159.107 ^b	
	FamCred	37.245	-2.904 ^b	67.523 ^b	.572 ^b	-118.905 ^b	154.111 ^b	
l	Age	7.811	422 ^b	5.347 ^b	.163 ^b	-3.941 ^b	17.342 ^b	
	Gender	-4.082	2.476 ^b	85.638 ^b	.960 ^b	-149.280 ^b	174.726 ^b	
	YearsofExp	593	.415 ^b	4.654 ^b	.904 ^b	-9.395 ^b	9.728 ^b	

- a. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples
- b. Based on 949 samples

Results testing Hypothesis 4

H4: Likewise, the inter-analyst reliability of accuracy judgments will be proportional to the congruence of the reliability and credibility scales.

Bootstrap for Coefficients

			Bootstrap ^a					
l					Sig. (2-	BCa 95% Confi	dence Interval	
Model		В	Bias	Std. Error	tailed)	Lower	Upper	
1	(Constant)	12.034	.022	.657	.001	10.606	13.338	
l	CongValue	1.453	021	.312	.001	.850	2.004	
2	(Constant)	12.995	.041	.733	.001	11.446	14.491	
l	CongValue	.876	028	.399	.040	.050	1.643	
l	CongPolarity	.961	.014	.332	.005	.255	1.624	
3	(Constant)	12.995	.044	.716	.001	11.444	14.547	
l	CongValue	.876	028	.372	.041	.107	1.562	
1	CongPolarity	.961	.010	.306	.008	.293	1.611	
	RminC	327	.002	.114	.015	537	092	

a. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples

CongValue = ABS(R-C). CongPolarity: 0 = RC Polarity congruent; 1 = RC polarity incongruent. RminC = R - C.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.626ª	.392	.380	2.21538
2	.670 ^b	.449	.426	2.13080
3	.710 ^c	.505	.472	2.04329

a. Predictors: (Constant), CongValue

b. Predictors: (Constant), CongValue, CongPolarity

c. Predictors: (Constant), CongValue, CongPolarity, RminC

CongValue = ABS(R-C). CongPolarity: 0 = RC Polarity congruent; 1 = RC polarity incongruent. RminC = R - C.

H1: Judged accuracy will increase with reliability and credibility

- H1 confirmed, and information credibility had only a slightly larger effect size than source reliability (cf. Samet, 1975).
- There was a polarity effect such that moving from a positive polarity term to a negative polarity term led to the largest decline in assessed probability.
- The latter finding suggests that a scale without a polarity change in the middle might be better. This could be tested (next?).

H2: Analysts will not be susceptible to the secrecy heuristic, and classification will have little or no effect on accuracy.

- H2 disconfirmed; there was a small effect of classification on assessed accuracy in line with the secrecy heuristic.
- The magnitude of the effect was not predictable on the basis of years of experience, age, or gender.

H3: The test-retest reliability of analysts will be proportional to the congruence of the reliability and credibility scales.

- H3 confirmed; low vs. high RC-value congruence yielded a medium size effect on test-retest reliability.
- The result is impressive given that retest happened within a single 30 min session.
- What does this say about reliability in the field over much longer timeframes?

H4: The *inter*-analyst reliability of accuracy judgments will be proportional to RC value congruence.

- H4 confirmed. Inter-analyst variability increased with RC value incongruence.
- Variability also increased with RC polarity incongruence (i.e., when one scale had positive polarity and the other had negative polarity).
- Variability also increased with information credibility exceeded source reliability (consistent with the view that R enables C).

Extra material: Specific resampled cases used for test-retest reliability

- Completely reliable, confirmed by other sources
- Completely reliable, possibly true
- Completely reliable, improbable
- Fairly reliable, confirmed by other sources
- Fairly reliable, possibly true
- Fairly reliable, improbable
- Unreliable, confirmed by other sources
- Unreliable, possibly true
- Unreliable, improbable
- Reliability cannot be judged, truth cannot be judged

